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Abstract. We recall the main features of the recently published mass formula, HFBCS-1, based on the
Hartree-Fock-BCS method, and compare its extrapolations out to the neutron drip line with those given
by the fine-range droplet model. A new Hartree-Fock-Bogolyubov mass formula, HFB-1, is described: the
rms error of the fit to 1888 masses is 0.766 MeV, compared with 0 .738 MeV for HFBCS-1, but there are
no substantial changes in the predictions relevant to the r-process. After a critical examination of various
questions relating to the effective nucleon mass and to the requirements of the relativistic mean-field theory,
we conclude that the greatest remaining ambiguity concerns the nature of the pairing force.

PACS. 21.10.Dr Binding energies and masses – 21.60.Jz Hartree-Fock and random-phase approximations
– 21.65.+f Nuclear matter

1 Introduction

The r-process of nucleosynthesis depends crucially on the
binding energies (among other properties) of heavy nuclei
that are so neutron rich that there is no hope of being able
to measure them in the laboratory. It thus becomes of the
greatest importance to be able to make reliable extrapo-
lations of nuclear masses (and other relevant properties,
such as fission barriers) away from the known region, rel-
atively close to the stability line, out towards the neutron
drip line. This means that one should have a mass formula
that not only gives a good fit to the data, but also has a
sound theoretical basis; generally speaking, the more mi-
croscopically grounded is a mass formula, the better one
would expect its theoretical basis to be.

Until recently the masses and barriers used in all
studies of the r-process were calculated on the basis of
one form or another of the liquid-drop model, the most
sophisticated version of which is the “finite-range droplet
model” (FRDM) [1]. Despite the great empirical success
of this formula (it fits 1654 masses with an rms error of
0.669 MeV), there is still an obvious need to develop a
mass formula that is more closely connected to the basic
nuclear interactions. Two such approaches are feasible at
the present time: one is the non-relativistic Hartree-Fock
(HF) method and the other the relativistic mean-field
(RMF) method, though so far only the first has been fully
exploited in the sense of complete mass formulas being
constructed, with essentially all the mass data being fitted.
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The first such mass formula is the recently published
HFBCS-1 [2,3], the main features of which we recall in
sect. 2, with the rest of the paper being devoted to a criti-
cal evaluation of this mass formula. In sect. 3 we deal with
pairing, and in particular describe a new HF-Bogolyubov
(HFB) mass formula. Various questions relating to the
effective nucleon mass are discussed in sect. 4, while in
sect. 5 we consider the relation of these Skyrme-based
mass formulas to RMF theory. Finally, in sect. 6 we at-
tempt to anticipate future developments.

2 The HFBCS-1 mass formula

This mass formula is based on a Skyrme-type HF force
with the usual form

vij = t0(1 + x0Pσ)δ(rij) + t1(1 + x1Pσ)

× 1
2h̄2 {p2

ijδ(rij) + h.c.}

+t2(1 + x2Pσ)
1
h̄2 pij .δ(rij)pij

+
1
6
t3(1 + x3Pσ)ργδ(rij)

+
i

h̄2 W0(σi + σj).pij × δ(rij)pij , (1)

where Pσ is the two-body spin-exchange operator, and a
δ-function pairing force,

vpair(rij) = Vπq δ(rij) , (2)
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is treated in the BCS approximation. The Wigner effect
is handled purely phenomenologically by adding to the
HF-BCS energy a term of the form

EW = VW exp(−λ|N − Z|/A) . (3)

In the HF part of the calculation we impose the con-
straint of axial and left-right symmetry on deformations,
with corrections made for the spurious centre-of-mass and
rotational energies. As for the pairing part of the cal-
culation, the pairing-strength parameter Vπq is allowed
to be different for neutrons and protons, and also to be
slightly stronger for an odd number of nucleons (V −

πq) than
for an even number (V +

πq), i.e. the pairing force between
neutrons, for example, depends on whether the neutron
number N is even or odd [4]. The BCS calculations are
performed with blocking, and a sharp cutoff energy of
h̄ω = 41A−1/3 is adopted; the Lipkin-Nogami variant of
the BCS method has not been used so far in these calcu-
lations.

The 10 Skyrme parameters are constrained by the con-
dition that the isoscalar and isovector effective nucleon
masses be equal, M∗

s = M∗
v = M∗. (We recall that these

two quantities are defined such that the effective mass of
a nucleon of charge type q in nuclear matter at the equi-
librium density ρ0 is given by

h̄2

2M∗
q

=
2ρq

ρ0

h̄2

2M∗
s

+
(

1 − 2ρq

ρ0

)
h̄2

2M∗
v

, (4)

where ρq is the density of nucleons of charge type q.) Thus
with four pairing and two Wigner parameters there are
15 degrees of freedom in all. The final parameter set, la-
belled MSk7, is determined by fitting to the 1772 mea-
sured masses given in the 1995 compilation [5] for nuclei
with A ≥ 36. Nuclei with A < 36 were excluded from the
fit because the HF-BCS method is not expected to work
well for such light nuclei, and we wanted to avoid contam-
inating the force by including inappropriate data in its de-
termination. The rms error of this fit is 0.683 MeV. If we
now add to our data set the measured nuclei with A < 36
and Z,N ≥ 8 without any further adjustment of the force,
the rms error rises to 0.738 MeV (for 1888 nuclei).

Charge radii. For each nucleus we calculate the rms
charge radius given by our model. Comparison with the
measured charge radii of the 523 nuclei listed in the 1994
data compilation [6] shows an rms error of only 0.024 fm.
We stress that this agreement has been achieved with-
out any further parameter adjustment, all our parameters
having been determined by the mass fit. This is a sensitive
test of the overall quality of the underlying model. A sim-
ilar check is provided by a comparison of the calculated
deformations with experiment [3].

Nuclear-matter symmetry coefficient J . The value
of this coefficient for our final parameter set MSk7 is
27.95 MeV, which is somewhat smaller than the values
of 32.73 MeV for the macroscopic part of the FRDM and
35.00 MeV for its microscopic part. This low value of J is
however quite robust within the framework of Skyrme-
force fits to all the mass data, and is in any case in
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Fig. 1. Energy per nucleon (MeV) of neutron matter as a
function of density (nucleons · fm−3).
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Fig. 2. Differences between HFBCS-1 and FRDM mass for-
mulas, as a function of the neutron separation energy Sn.

good agreement with nuclear-matter calculations based on
modern realistic nucleonic interactions [7,8], which give
values over the range 28–30 MeV. It is noteworthy that
our value of J is close to the lower limit that is compatible
with the stability of neutron matter: see fig. 1, in which
FP denotes the realistic calculations of ref. [9], and also
ref. [10].

Comparison with the FRDM. For our final set of 1888
masses the rms error given by the FRDM [1] is 0.689 MeV,
and might have been still lower had the model been fit-
ted to this set. With our own rms error of 0.738 MeV,
the differences between the two mass formulas are very
small over the known region of the nuclear chart, but be-
come pronounced on extrapolating to the neutron drip
line, as can be seen in fig. 2, where we plot the differ-
ences as a function of the neutron separation energy, Sn

(this figure also shows that the divergence is much smaller
on the proton-rich side). This strong divergence is associ-
ated with bigger shell gaps near the neutron drip line for
FRDM at N0 = 50 and 82, and for HFBCS-1 at N0 = 184;
we are here defining the neutron shell gap by

∆(N0, Z) = S2n(N0, Z) − S2n(N0 + 2, Z) . (5)
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The stronger gap for HFBCS-1 at N0 = 184 will imply
higher fission barriers for very heavy, very neutron-rich
nuclei, which could lead to the r-process evolving to much
heavier nuclei than previously believed [11].

3 Pairing considerations

The most questionable aspect of the HFBCS-1 mass for-
mula is the use of the BCS method to calculate pairing,
the superiority of the Bogolyubov method at the neu-
tron drip line having been stressed many times: see, for
example, ref. [12]. Samyn et al. [13] have therefore con-
structed a new mass formula, HFB-1, very much on the
lines of HFBCS-1, except that pairing is handled with the
Bogolyubov method. (Working as always in a harmonic-
oscillator basis, we do not make the transformation of
Stoitsov et al. [14], since binding energies are expected
to be insensitive to such asymptotic considerations.) The
Skyrme and pairing forces, as well as the Wigner term,
have the same forms as before, and the same cutoff is
adopted in the pairing channel. With the HFB method
replacing the HF-BCS method it was found that there
was a deterioration in the data fit with the original force
MSk7. A new fit was accordingly made in the HFB model,
with the final parameter set, labelled BSk1, giving an rms
error of 0.766 MeV to the same data set of 1888 nuclei
as before, only slightly worse than the original error of
0.738 MeV. The values of the BSk1 parameters are

t0 = −1831.65 MeV · fm3 , t1 = 263.318 MeV · fm5 ,

t2 = −296.824 MeV · fm5 , t3 = 13458.2 MeV · fm4 ,

x0 = 0.596663 , x1 = x2 = −0.5 , x3 = 0.817748 ,

W0 = 117.984 MeV · fm5, γ = 0.333333 ,

V +
πn = −227 MeV · fm3 ,

V −
πn = −236 MeV · fm3 ,

V +
πp = −251 MeV · fm3 , V −

πp = −260 MeV · fm3 ,

VW = −2.90 MeV , λ = 30.0 .

Extrapolating out to the neutron drip line, it was found
that the shift in the HFB-1 masses with respect to the
HFBCS-1 masses was almost invariably less than 2 MeV,
while the shifts in the Sn and the beta-decay energies Qβ ,
the quantities of ultimate interest for the r-process, are
much smaller. Of particular interest in this respect is the
almost negligible difference between the shell gaps for the
two methods, as shown in fig. 3.

We conclude that replacing the BCS method by the
Bogolyubov method will have very little impact on masses,
insofar as they are relevant to the r-process. However, this
is not to say that there are no important ambiguities as-
sociated with the pairing. Indeed, it has been known for
some time that making the pairing force density depen-
dent in such a way that it is concentrated in the nuclear
surface can lead to a stronger quenching of the shell gap
as the neutron drip line is approached [15]. However, such
a modification of the pairing force may not lead to any
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Fig. 3. Neutron shell gaps for N0 = 82, 126, and 184, as a
function of Z.

significant improvement in the data fit: in this case one
would have to be guided by more microscopic studies of
the origin of the pairing force. It will also be necessary
to study the sensitivity of the extrapolated masses to the
cutoff in the pairing channel. However, to the extent that
the pairing force originates through the exchange of sur-
face phonons it will be long ranged, which means that in a
δ-function representation a low-energy cutoff is indicated.
Finally, we intend to see what happens when the Lipkin-
Nogami procedure is implemented.

4 On the effective nucleon mass

In all the above data fits we have imposed the constraint
M∗

s = M∗
v , and for the final forces the common value of

these two effective masses is M∗ = 1.05M . Releasing this
constraint, we find that the optimal value, as determined
by the data fit, of M∗

s , the isoscalar effective mass,
remains very close to 1.05M , while that of M∗

v , the
isovector effective mass, is badly determined by the mass
data, falling in the rather wide range of 0.90 ± 0.20M .
However, the extrapolated masses at the neutron drip line
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are much more sensitive to M∗
v (see eq. (4)), but the asso-

ciated ambiguities in the Sn and Qβ are inconsequential
for the r-process [16].

5 Relation to RMF theory

For a Skyrme force of the form (1) the spin-orbit (s.o.) field
for nucleons of charge type q is given approximately by

Wq =
1
2

W0∇(ρ+ρq) =
3
4

W0∇
{

ρ ± 1
3
(ρn − ρp)

}
, (6)

where ρ = ρp + ρn, and the upper sign corresponds to
q = n, the lower to q = p. But in RMF theories the s.o.
field can depend on (ρn − ρp) only through the ρ-boson,
and in view of the relatively weak coupling of this boson
to the nucleon field it was suggested [17] that the s.o. field
would have a much weaker isospin dependence in RMF
models than in Skyrme-force models. Thus, it was argued,
an RMF model and a Skyrme-force model that give com-
parable high-quality fits to the data might diverge when
extrapolated far from the stability line. In fact, in view of
the importance of the s.o. field for the determination of
single-particle states, this was expected to be the princi-
pal difference between Skyrme-force and RMF methods,
and it seemed that the former should fall into disfavour,
since a theory that has manifest Lorentz invariance is
inevitably to be preferred to one that does not.

However, in the case of the Skyrme force it is fairly easy
to see that the isospin dependence arising from the second
term of eq. (6) cannot be very large. In the first place we
note that even at the neutron drip line the magnitude of
1
3 (ρn−ρp) cannot exceed 10% of the first term ρ. Secondly,
both of these terms are acted on by the gradient operator,
and since the neutron and proton profiles are nearly every-
where parallel it follows that the isospin-dependent term
in eq. (6) can make a non-zero contribution only over very
restricted regions of the nucleus. Thus, there is reason to
believe that the isospin dependence of the s.o. field will be
similar in Skyrme-force and RMF models, provided both
models are well fitted to the data. This has been confirmed
in ref. [18], where it was shown that s.o. splittings in the
HFBCS-1 model agree well with those given in the RMF
approach, where available. The one counterexample that
has been proposed [19] is that of 40Ne, which actually lies
beyond the neutron drip line.

6 Conclusions

It is shown that although the recently published mass for-
mula HFBCS-1, the first to be based on the HF method,
gives almost as good a fit to the mass data as does the
FRDM mass formula, there are significant differences in

their extrapolations to the neutron drip line. We have
discussed ways in which the mass predictions for highly
neutron-rich nuclei given by HFBCS-1 could be modified
by future theoretical developments. It is shown that con-
clusions relevant to the r-process of nucleosynthesis are
not changed in any substantial way either by replacing
the BCS calculation of pairing effects with the Bogolyubov
method, or by incorporating an improved understanding
of the isovector dependence of the nucleon effective mass.
Moreover, the isospin dependence of the spin-orbit field
generated by the Skyrme forces underlying the two mass
formulas is compatible with RMF theory. The most likely
changes will be those associated with making the pairing
force density dependent. Adding to the Skyrme force a t4
term, i.e. a term with simultaneous density and momen-
tum dependence, is expected to result in an improvement
in the data fit [20].
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